
22 The Delphi Magazine Issue 62

Effective Delphi
Class Engineering
Part 4: The TObject
Of My Affection
by David Baer

We have already examined one
of the three foundation con-

cepts of object oriented program-
ming: encapsulation. In this part
and the next, we’ll be examining
the other two: inheritance and poly-
morphism. Unlike encapsulation,
which can be considered in isola-
tion, inheritance and polymor-
phism are inextricable. We can’t
discuss one without the other.

It’s also fair to say that inheri-
tance is more straightforward and
immediately comprehensible, and
we’re going to defer all but the
essentials of polymorphism until
next month.

It seems somehow fitting that
during the time I’ve been develop-
ing the outline of these two parts,
my pleasure reading has been the
latest volume in the delightful
Harry Potter series. It’s not that
there’s anything magical about
how inheritance and polymor-
phism are implemented by the
compiler. I hope you’ll agree this is
all very straightforward when
you’ve finished reading this article.

No, what makes this fitting is
that, to me, there was wizardry
afoot when these ideas were ini-
tially conceived. They are so
inspired that it’s difficult for me to

view them as other than the
creations of magical minds.

So, let’s waste no more time:
we’ve got a lot of ground to cover.
Could somebody please hand me
that wand? Thanks... Ready?

Accio TObject!

Basic Inheritance
Membership has its privileges: take
advantage of the fact that your class
is also a TObject.

In all our example class declara-
tions so far, we’ve dodged a funda-
mental issue: TObject is a class that
is the direct or indirect ancestor of
all others in Object Pascal code.
Stated another way: all classes,
except TObject itself, inherit from a
parent class and if that parent class
is not explicitly named in the decla-
ration then it’s implicitly TObject.

But, what do these terms ances-
tor and inherit mean? Ancestor is
easy to explain: class TA is the
ancestor of class TC if TA appears
somewhere in the chain of inheri-
tance which extends back to
TObject.

OK, so now what does inherit
mean? Let’s skip a formal definition
for now and simply consider the
consequences of having a class
that is a descendant of TObject. So
far, all our example class declara-
tions have started something like:

TMyClass = class ...

But this form is the precise
equivalent of:

TMyClass = class(TObject) ...

in which the name in parentheses
denotes the parent class. So, what

does having TObject as an ancestor
buy us?

Quite a lot, as it turns out.
TObject is a class itself; it’s small
but potent. And the good news is
that all of the non-private member
data items, properties and meth-
ods in an ancestor class are avail-
able to our class. Those members
that are public are immediately
available to clients of our class as
well, with no extra work on our
part. For properties in the ances-
tor class that are protected, we
have two choices. We may utilise
them in our class, but continue to
keep them off limits to class cli-
ents, or we may ‘promote’ them to
public for use by class clients.

Actually, there are no data mem-
bers in TObject, but there are sev-
eral handy methods. We can
invoke the ClassName function, for
example, to retrieve this informa-
tion as a string (which can be
immensely useful in constructing
debug output). I would recom-
mend that you peruse the TObject
help to get a full accounting. When
you do, pay attention to the Dis-
patch method. The messaging
capability of TObject is a powerful
mechanism which we’ll be looking
at closely a bit later.

More On Inheritance
Think of using inheritance as a
mechanism for implementing class
specializations.

All right, let’s try a more formal
approach to explaining inheri-
tance. One excellent way to view it
is as an extension capability. Let’s
say that you have a class that does
many things you need, but not
quite all that you need. You may
write a descendant of that class
which offers the extensions or
customizations the parent class
fails to deliver. As just stated, your
descendant class has all of the
non-private data and methods of
the parent class available to it. Not
only that, your class has all the
non-private data and methods of
all ancestor classes, going all the
way up the chain to TObject.

The above statement is true
when the descendant class resides
in a unit that’s separate from the
parent. Recall from Part 2, how-

➤ Listing 1

TParent = class(TObject)
private
ParNbr1: Integer;
ParNbr2: Integer;

public
procedure DoSomethingParental;

end;
TChild = class(TParent)
private
ChldNbrA: Integer;
ChldNbrB: Integer;

public
procedure DoSomethingChildish;

end;

October 2000 The Delphi Magazine 23

ever, that where classes are
defined in the same unit, the
descendant class has access to all
data members, properties and
methods of the parent (and of any-
thing else defined in that unit as
well).

But let’s return to the notion that
a descendant class is a specializa-
tion of its parent class. There are
two crucial parts here: ‘specializa-
tion’ and ‘is a’. As far as the
language is concerned, the descen-
dant class formally is a parent
class type as well. Let’s see how
this plays out in Object Pascal (OP)
code.

Listing 1 shows two class decla-
rations. We’re going to use these
throughout, adding methods, etc
as we go, but we’ll start with a
bare-bones set. TParent is a special-
ization of TObject, and TChild is a
specialization of TParent. So, we
have three is a relationships here:
TParent is a TObject, TChild is a
TParent and also is a TObject. The
OP is operator returns True in all
cases where an is a relationship is
present, and False otherwise.

Next, let’s look at assignment
compatibility. The compiler will
allow assignment of a class
instance to a class instance vari-
able (ie, a class reference variable)
of another type where the instance
class type is a reference variable
type. If that sounds a little confus-
ing, take a look at the examples in
Listing 2, which illustrates which
assignments are legal and which
are forbidden.

Finally, let’s examine the storage
allocation behavior that occurs
with inheritance. We looked at
basic object storage allocation in
Part 2 and, hopefully, you found it

to be straightforward. Fortunately,
things are only marginally more
complicated when we introduce
inheritance into the picture.

When an instance of a class is
created, a block of storage is allo-
cated from the heap for instance
data. For an instance TObject, the
block will be four bytes. Those four
bytes will contain a pointer to class
information. Since TObject has no
member data items, there’s no
need for additional storage. Of
course, there is never a need to
actually create an instance of
TObject.

In our examples, TParent inherits
from TObject. As such, the instance
data block starts with a layout
identical to that of its parent. This
area is immediately followed by a
layout that accommodates the
data members of TParent.

The layout for the instance data
of a TChild is organized in a similar
fashion: parent data followed by
TChild items. All of this is illus-
trated in Figure 1. One final note
while we’re on the subject:
TObject’s public method Instance-
Size may be used to discover the
size of the instance data block of
any object or class.

Member Visibility
Use protected member methods and
properties for those things you want
to be accessible to descendant
classes, but not accessible to the
general public.

You might have noticed that I’ve
used the term ‘non-public’ several
times. This was basically a dodge. I
wanted to avoid the equivalent
phrase ‘protected or public’, an
explanation of which would have
slowed us down. Well, now it’s time
to address this subject. Hopefully,
you’ll recall from Part 2 that class

members (data items, properties
and methods) which are
declared as public are available
to code outside your class’s
methods. Private and protected
items are not. Private members,
on the other hand, are available
only to code residing in the same
unit in which the class declara-
tion exists (which, of course,
includes all methods of that
class).

Protected status is less restric-
tive than private. Protected class
members are available to descen-
dant classes, but not to the general
public. You may at some point find
yourself confused when trying to
decide which class members
should be private and which pro-
tected. Time for a new guideline.

Protection Levels: Data
Declare member data items as pri-
vate; allow derived classes access
via protected properties.

Unless you’re developing a class
library for commercial distribu-
tion, don’t sweat the small stuff in
determining what should be pri-
vate versus protected. You can
expend a great deal of energy on
trying to get this exactly right, but
end up with very little that’s bene-
ficial to show for your efforts.

In practice, most of the classes
you design will probably be ‘final’
classes (to borrow a Java term) in
any case. By this I mean a class for
which actual objects will be
instantiated and which will not be
used as the base class from which
other classes will inherit. For a
final class, all we need care about
is encapsulation, ie deciding what
class clients may access. From that
perspective, private and protected
accomplish the same thing.

But what if you are designing a
class to be a base class, intended
to be a parent in an inheritance
scheme, for ‘in-house’ use? Even in
this case, you or your team will
usually be responsible for design-
ing all the classes in the family. As
such, you can normally apply a few
‘rules of thumb’, and if the rule
doesn’t work for a particular cir-
cumstance, then just ignore it for
that case and get on with things.

O1, O2: TObject;
P1, P2: TParent;
C1, C2: TChild;
...
// these assignments are legal
O1 := O2; // O2 is-a TObject
O1 := P2; // P2 is-a TObject
O1 := C2; // C2 is-a TObject
P1 := P2; // P2 is-a TParent
P1 := C2; // C2 is-a TParent
C1 := C2; // C2 is-a TChild
// these produce compile errors
P1 := O2; // O2 is-a TParent - not!
C1 := O2; // O2 is-a TChild - not!
C1 := P1; // P1 is-a TChild - not!

➤ Listing 2

TParent Class Info
AParNbr2
AParNbr2

TChild Class Info
AParNbr1
AParNbr2

AChldNbrA
AChldNbrB

TChild
Class

Information

TParent
Class

Information

An instance of TParent

An instance of TChild

THE HEAP

➤ Figure 1

24 The Delphi Magazine Issue 62

It’s only when you’re producing
a class library for external con-
sumption that this issue starts to
truly matter. On the one hand, the
more you keep private, the more
flexibility for code modifications
you have in future releases without
breaking existing client code (in
client classes inheriting from those
in your library). At the same time,
being stingy with the protected
designation can make effective
inheritance anything from difficult
to impossible. Fortunately, it’s
likely most of you will never find
yourselves in this position.

In my own class coding, one of
my ‘rules of thumb’ is stated in this
guideline. The rationale behind
this is the same as in never provid-
ing public access to data members
(as explained in Part 3). Permit
access from the outside as neces-
sary, but retain control by using
properties, which allows you to
provide get and set methods as the
need for such becomes evident.

While it’s usually fairly easy to
determine the proper amount of
visibility for class data items and
properties, the visibility of meth-
ods is quite another matter. Before
we examine this, we need to
consider the behavior of class
methods in the context of
inheritance.

Inheritance And Methods
Override base class methods to
provide alternative behavior, but
make calls to inherited methods to
draw upon base class services when
you need them.

The key to introducing special-
ization in class inheritance is in
supplying methods that augment
or replace services in base classes.
For new behavior (ie new ser-
vices), we may simply add meth-
ods to supply services not
available from base classes. But
when we want to alter existing
behavior, we often need to substi-
tute a method of our own for one in
a base class. This replacement may
involve totally supplanting the
base class processing, it may
involve subtle modifications in
behavior, or anything in between.

Whatever the level of alteration,
we’re engaging in the practice of
what most Delphi coders would
call overriding base class methods.
Actually, this terminology is not
quite correct, but please briefly
allow me some leeway (I’ll clarify
this point shortly).

Listing 3 shows a simple case
added to our example class family.
Normally, the same parameter
types (and return type for func-
tions) are used. For virtual meth-
ods, which we’ll discuss in a
moment, the override directive is
required in the declaration.

So what can we do in our overrid-
den method? Basically, anything
we want, subject only to the limita-
tion that we cannot call private
methods in ancestor classes or
access private data. But we can
certainly call protected methods.
In fact, one of the more common
situations is where we call the
ancestor version of the method
being overridden. We do this by
prefacing the method name with
the keyword inherited.

Listing 3 contains an example of
this technique (admittedly, not a
very realistic one). The compiler
allows a shorthand notation as
well. You may just call inherited
without referencing the method
name or specifying the parame-
ters. This is interpreted as a call to
the inherited version using the
same parameters passed into the
routine doing the calling. Look up
inherited in the Delphi help for an
explanation of all the nuances.

I tend to avoid this kind of nota-
tion because I like the explicitness
of the fully written code. But the
compiler behavior is well docu-
mented, and I’m not suggesting
that the shorthand is bad practice.

If you’re thinking that all of this
is pretty straightforward so far,
you’re quite right. However, the
subject gets more complicated
when we introduce early versus
late binding in method calls.

Virtual Methods
Understanding virtual method
behavior is the key to harnessing the
power of inheritance (and avoiding
some of its limitations).

Virtual methods are at the heart
of effective inheritance. But they
can be one of the more elusive
topics of object orientation to fully
understand (at least I remember
that being the case when I was first
studying OO).

We need to look at this subject
now, because it plays an important
role in method inheritance, but
we’re not going to really dig into it
until the next instalment. When we
do, I hope to show you an example
of real life use where the value of
virtual methods becomes immedi-
ately obvious. For now, I’m afraid
we’ll have to focus on the basic
mechanics.

The overridden methods we’ve
looked at so far provide for static
calls. By static calls, I mean calls
that are ‘hard-wired’ at compile-
time (we’ll look at an example
shortly). Compilation into static
calls is often referred to as early
binding. But another possibility
exists.

When a method is declared as
virtual, overriding methods in
descendant classes get different

TParent = class(TObject)
public
function ReturnOnInvestment: Double;

end;
TChild = class(TParent)
public
function ReturnOnInvestment: Double;

end;
...

function TParent.ReturnOnInvestment: Double;
begin
Result := <some calculation>;

end;
function TChild.ReturnOnInvestment: Double;
begin
// get ROI from parent method; if news is good, make it
// better; if news is bad, make it less so
Result := inherited ReturnOnInvestment;
if Result > 0 then
Result := Result * 2

else
Result := Result / 2;

end;

➤ Listing 3

26 The Delphi Magazine Issue 62

treatment in the way calls to the
method are compiled. In this case,
the decision about which version
of the method (eg the base class’s
version or the descendant class’s
version) is deferred until runtime.
This is known as dynamic invoca-
tion, or late binding.

As it turns out, only virtual
methods may be overridden, if
we’re being precise. Non-virtual
methods are not overridden, but
merely replaced. An additional
consequence is that overriding
methods must have the same
parameter (and function return
type) as the method being overrid-
den. This is not a requirement for
replaced methods (although it will
typically be so, nevertheless).

If you spend any time reading the
Delphi news groups, you’ll realize
that a fair number of otherwise
expert participants can be a bit
sloppy on this subject, and will
nonchalantly speak of overriding
non-virtual methods.

Let’s return to a different version
of our simple example class frame-
work. In Listing 4 we see that
TParent has two methods, one of
which is virtual, and TChild has its
own version of each. Note that the
override for the virtual method has
the directive override present in
the declaration.

In the code, we create a TParent
object, assigning it to a TParent ref-
erence. We also create two TChild
objects, assigning one to a TParent
reference and the other to a TChild
reference. Remember, we can
assign the TChild to a TParent
reference variable because TChild
is a TParent.

The comments in the code then
tell the whole story. We see that
the non-virtual (ie the statically
called, or early bound) method
calls are based on the reference
type. The virtual (dynamically
called, or late bound) method calls
are based on the actual object
type.

You may not realize it, but
you’ve just encountered the won-
derful power of polymorphism:
that quality in objects that allows
runtime responsiveness based on
object type. Inheritance without
polymorphism would be of limited

use but, with it, inheritance offers
extraordinary power.

But this leads us back to the
more mundane dilemma of decid-
ing just how accessible a base class
needs to be to descendant classes
for method overriding.

Protection Levels: Methods
Determining private versus pro-
tected status on methods can lead to
a major case of analysis-paralysis:
use an arbitrary scheme and get on
with more useful things.

Some would, no doubt, regard
this guideline as heresy. This is the
sort of topic over which ‘holy wars’
have been fought (at least in the
contentious C++ community). But
my motivations are purely prag-
matic and assume, once again, that
you’re not engaged in developing a
class library for commercial distri-
bution, where these consider-
ations can have an impact on the
extensibility of the product.

The fact of the matter is that
assigning method protection allo-
cations that are nearly perfect can
be extraordinarily difficult due to
the number of factors that need to
be considered for each case. For
example, if a method absolutely
needs access to a private data
member to be functional (and
where there’s no protected prop-
erty to access instead), then
making the method protected
(meaning it may be overridden) is
pointless. You probably wouldn’t
be able to do anything useful in the
overridden code anyway. For a big
class with lots of methods and data

members, attempting to apply this
level of scrutiny in every case may
leave your head spinning.

If you’re designing a class frame-
work for in-house use, you can
start with a restrictive scheme and
promote as the need arises. Alter-
natively, you can be more
generous with the protected desig-
nation, knowing that you’ll also be
designing descendant classes and
should therefore be able to
manage the encapsulation at all
levels. The point is to approach it
pragmatically and find a scheme
with which you’re comfortable
and which doesn’t slow you down.

For example, property read and
write methods should never need
overriding. You can make these
private without a moment’s
thought. Conversely, any method
you know will be subject to over-
riding (or replacing) in descendant
classes must be protected. Virtual
methods are so designated
because they are intended for
overrides. As such, they should
never be private.

But I must be honest and confess
that I’m somewhat lazy in this area.
My typical practice is simply to
declare all non-public methods as
protected (and I have yet to be
burned by this approach). In my
experience, if you properly limit
the visibility of class data mem-
bers, the rest pretty much takes
care of itself. But if you regard this
casual approach as undignified, I’ll
understand.

TParent = class(TObject)
public
procedure DecideEarly;
procedure DecideLate; virtual;

end;
TChild = class(TParent)
public
procedure DecideEarly;
procedure DecideLate; override;

end;
...
Parent: TParent;
Child: TChild;
ParentalChild: TParent;
...
Parent := TParent.Create;
Child := TChild.Create;
ParentalChild := TChild.Create; // TChild assigned to TParent!
// early bound (non-virtual) calls
Parent.DecideEarly; // TParent version called
Child.DecideEarly; // TChild version called
ParentalChild.DecideEarly; // TParent version called
// late bound (virtual) calls
Parent.DecideLate; // TParent version called
Child.DecideLate; // TChild version called
ParentalChild.DecideLate; // TChild version called

➤ Listing 4

October 2000 The Delphi Magazine 27

Class Parentage
Use an ‘is a’ versus ‘has a’ delibera-
tion to determine if you are inherit-
ing from the most appropriate base
class.

Where a class is a specialization
of an existing class, determining
what to use as the base class is
sometimes fairly obvious. But this
is not always the case. In particu-
lar, it’s important to distinguish
between the cases where your
class truly is a specialization of the
base class and the one in which it
simply requires an instance of that
class to accomplish its goals.

Let’s consider two examples.
First, let’s assume we need a class
that does everything TList does,
plus a little bit more. Those exten-
sions might be the capability for a
block deletion (starting at index I,
delete N items). While we’re at it,
let’s also provide a property, High,
which returns Count-1, so that we
can save a few keystrokes when
writing code that iterates through
the list with a for statement.

What to use as the base class
here? It doesn’t take a flash of

brilliance to arrive at the answer.
The base class should be a TList,
no doubt about it.

Now, let’s consider a different
case. Suppose we need to imple-
ment a stack class (a list that offers
last-in-first-out management of the
stored items). Why re-invent the
wheel here? Why not use a TList to
manage the stored items and just
provide the requisite methods:
Push, Pop and Peek?

So, we once again use TList as
the base class, right? Bzzzt! Wrong!
This is a trap that neophyte class
designers can easily fall into. TList
has much of what we need so it’s
tempting to use it as a base class.
There’s one problem, though, and
it’s a major one. A stack is not a list,
period!

As a stack, we want our clients to
have access to the push, pop and
peek services we provide, but they
should not have the capability to
insert or delete items at arbitrary
locations in the stack. Those
actions are not in the stack’s char-
ter. But by inheriting from TList, all
of its public methods (Insert,

Delete, Exchange, etc) are available
to the users of our stack class.

So, what to do? We still would
like to avoid re-inventing all the
storage management services
required. The answer is simple. We
want our class to use a TList inter-
nally for storage management, but
we just don’t want it to inherit from
TList. For the base class, TObject
will do nicely.

As an internal helper class, we
may expose as many or as few of
the TList methods and properties
as appropriate (in this case, not all
that many). By employing a TList,
but not being a TList, our stack
class does not offer all of the public
TList methods to our clients.
While many classes will manage
collections of items, very few will
be such straightforward exten-
sions of TList that inheriting from
TList (or TStringList, either for
that matter) is appropriate.

It all boils down to the is a crite-
rion. If you can say that I could use
the inherited class any place I
needed the base class with no ill
effect, you’ve made a valid case for

28 The Delphi Magazine Issue 62

the proposed inheritance. But if
the is a relationship is shaky, then
rethink things. You’re likely just
looking at a has-a situation instead.

Under The Hood
To gain insight into the inner work-
ings of a Delphi object, including
how method invocations are han-
dled, study the class information
layout in system.pas.

I always feel more comfortable
and assured about the code I write
when I have some idea about what
the compiler is generating from it,
and I suspect most of you do as
well. With this in mind, it’s fortu-
nate that the mechanisms in play
for class method invocations are
quite straightforward.

We have discussed memory allo-
cation issues of object instances
several times. You may recall that I
showed how the first four bytes of
any object instance data is a
pointer to some class information,
but I was quite vague as to what
that information was. Well, now is
the time to take a closer look.

Each class has a block of data in
the load module that contains
essential information about the
class, information that’s used in a
variety of ways. The layout of this
storage changes from time to time
(although no changes were evident
between Delphi 4 and 5).

In any case, the Borland engi-
neers did what any good developer
would do with arbitrarily changing
offsets. They declared these as
constants in System.pas, and a
study of them can be enlightening.

These declarations are shown in
Listing 5.

There’s just a little misinforma-
tion here, but it’s easily cleared up.
You can see that the comment
identifies the offsets as belonging
to the virtual method table (more
frequently, the VMT). Actually,
there’s a good deal more here than
just virtual method call support. In
fact, only some virtual method
information appears with these
constants, but we’ll get back to
that in a moment.

The class instance data pointer
to the VMT truly does point to the
VMT portion of the class informa-
tion, but there’s much other infor-
mation at negative offsets to that
pointer, as can be seen in Listing 4.
For example, at vmtInstanceSize is
a 4-byte integer specifying the size
of the instance data required by
objects of the class. The parent
class VMT may be found at offset
vmtParent.

The addresses of the routines
used to do the allocation (for a
create) and de-allocation (for a
destroy) are found in vmtNew-
Instance and vmtFreeInstance.
These are declared as virtual in
TObject, but appear before the offi-
cial start of the virtual methods
beginning at offset zero of the VMT.
In fact, this is true of all the virtual
methods declared in TObject.

A complete discussion of what is
found at these negative VMT loca-
tions is more than we have space
for here. But you can learn much
just by examining the names of the
constants.

The real VMT of TObject descen-
dants, that is to say, the part of the
class information that supports
virtual method invocations, begins
at offset zero. Don’t be distracted
by the declarations of vmtQuery-
Interface etc (which would appear
to occupy space starting at offset
zero). The first virtual method in
an immediate descendant of
TObject will appear at that offset.

Each virtual method in a class
will have a pointer to the start of
the code for the method listed in
the VMT in successive 4-byte slots.
The key to why this works is that
this pointer will appear in the same
offset from the start of the VMT for
every class descendant as well.
That’s all there is to it!

If a descendant class overrides a
virtual method, the address of the
overriding method will now
occupy the slot. If it does not over-
ride a method, the slot will contain
the address of the most recent
class in the hierarchy that did
override it (or of the original vir-
tual method if no overrides have
been made anywhere in the inheri-
tance chain).

The machine code for calling a
virtual method requires a lookup
the address of the method before
executing the jump to the routine.
There’s a small amount of over-
head in doing it this way compared
to jumping to an early-bound
(‘hard-wired’) method address.
But the few extra instructions
aren’t all that expensive, and one
should never shy away from using
virtual methods over concerns of
execution efficiency.

Next Time
We’ve still got a lot of ground to
cover in the exploration of inheri-
tance and polymorphism. Next
month we’re going to pick right up
where we left off here and look at
some of the more subtle aspects of
these topics.

David Baer is Senior Architectural
Engineer at StarMine in San
Francisco. He’ll turn 53 right
around the time you’ll receive this
issue and he’s grateful for his
inheritance: the genes that, thus
far, have decided that hair on his
head should continue to grow in
reasonable profusion. Contact
him at dbaer@starmine.com

{ Virtual method table entries }
vmtSelfPtr = -76;
vmtIntfTable = -72;
vmtAutoTable = -68;
vmtInitTable = -64;
vmtTypeInfo = -60;
vmtFieldTable = -56;
vmtMethodTable = -52;
vmtDynamicTable = -48;
vmtClassName = -44;
vmtInstanceSize = -40;
vmtParent = -36;
vmtSafeCallException = -32;
vmtAfterConstruction = -28;
vmtBeforeDestruction = -24;
vmtDispatch = -20;
vmtDefaultHandler = -16;
vmtNewInstance = -12;
vmtFreeInstance = -8;
vmtDestroy = -4;
vmtQueryInterface = 0;
vmtAddRef = 4;
vmtRelease = 8;
vmtCreateObject = 12;

➤ Listing 5

	Basic Inheritance
	More On Inheritance
	Member Visibility
	Protection Levels: Data
	Inheritance And Methods
	Virtual Methods
	Protection Levels: Methods
	Class Parentage
	Under The Hood
	Next Time

